Research
Collaborative Research: vObjects – Understanding their Utility to Enhance Learning of Abstract and Complex Engineering Concepts
Institutional Transformation: Cultivating an ethical STEM culture through an integrated undergraduate general education
Research: Examining the impact of mechanical objects in students learning of thermodynamics-related engineering problems
NSF Award #1712210
Title: Collaborative Research: vObjects – Understanding their Utility to Enhance Learning of Abstract and Complex Engineering Concepts.
Abstract: Thermodynamics is a subject that often features engineering problems that are not well-defined and abstract concepts that are often hard for students to understand. In addition, the scale at which thermodynamic phenomena occur makes it difficult, if not impossible, for students to interact with authentic physical objects that exhibit such phenomena. To address these challenges, this project will use virtual objects (vObjects) to enhance learning by closely mapping the learner experience to real-life engineering scenarios. This study will be one of the first to systematically evaluate characteristics and features of a virtual learning environment designed to support the “messiness” of real world problem solving.
This project will employ technological advancements for manipulation of vObjects to help students apply foundational knowledge to the solution of ill-defined problems and to address the improvement of virtual learning for future engineering curricula. A comprehensive understanding of the utility of vObjects in engineering will contribute to the development of online learning environments, including augmented reality environments. Virtual learning of engineering skills can also be used as a tool for broadening participation in STEM by providing the opportunity for greater access by diverse students. In broad terms, this research will contribute to improving and transforming undergraduate engineering education by enhancing student learning of theoretical and abstract engineering concepts.
NSF Award #1737042
Title: Institutional Transformation: Cultivating an ethical STEM culture through an integrated undergraduate general education.
Abstract: This project will study the implementation and effectiveness of a university wide ethical reasoning curriculum. The project will identify and assess the culture of ethics education that emerges from “Pathways to General Education” at Virginia Tech. The project will do a systematic analysis of institutional transformation. It will focus on the culture of STEM ethics by tracing the implementation of ethical reasoning into a new general education curriculum. The research will evaluate the transferability of this approach to other institutions. The project will contribute to broadening students’ expertise beyond their field of study and to provide competencies that will transfer to the workplace. Summer institutes, webinars, on-line training modules and workshops will be developed for faculty to promote ethical considerations in teaching and doing STEM. The findings of this project will be of interest to faculty members, students, university administrators and businesses.
The project will include multi-pronged evaluations of the efficacy of a new curriculum program at Virginia Tech. It will understand the dynamics of the individual, collective, and institutional processes evident in their implementation; and test the overall utility of the ABCD theory of change as employed in this transformation effort. There are four categories of anticipated impacts from this project: 1) evaluation for direct improvement in faculty ethics teaching competency, 2) evaluation of students’ ethics learning competency, 3) estimation of changes to ethical climate in an R1 STEM focused university, and 4) dissemination of findings and best practices from this project’s research to other institutions. The project will collect qualitative and quantitative data through interviews, surveys and participant observation.
NSF Award #1763477
Title: Research: Examining the impact of mechanical objects in students learning of thermodynamics-related engineering problems.
Abstract: As technology quickly advances in modern society, it is important that the engineers of tomorrow fully learn the basic concepts of engineering so that they can apply these concepts throughout their careers to a range of new applications. Many engineering courses in college involve teaching abstract concepts that are often difficult for students to understand. For example, “Thermodynamics” is an important course that involves learning about relationships between heat, energy, and mechanical work. Thermodynamics is known to be a difficult course for many students since some of the concepts in the class, such as heat and energy, are abstract. One method for teaching difficult engineering subjects is to use physical or mechanical objects that a student can touch and manipulate in order to demonstrate important concepts. This project examines new approaches for the use and evaluation of mechanical objects as teaching tools in a thermodynamics course with the idea that results from this work can then be applied to additional engineering courses.
This project examines person-object interactions, a significant and critical aspect of engineering, to examine how these interactions affect comprehension of challenging concepts. The primary question to be addressed in the project is fundamental to engineering education and practice: What is the value of mechanical objects in learning engineering related concepts? This study uses quasi-experiments in a mixed methods design where different mechanical objects are used in several problem-solving activities in Thermodynamics classes. Physically demonstrating key thermodynamics concepts, involved in traditional problems, such as the conversion of heat to work, ideal gas behavior, or liquid-vapor phase change processes can be augmented with the use of mechanical objects. For example, a typical “piston-cylinder” arrangement in an automobile engine can be modeled with a simple mechanical object that consists of a plunger in a syringe with an integrated temperature sensor to physically illustrate relationships between compression, expansion, work, heat, temperature, and pressure. The study results will be analyzed in order to provide a clear picture of how the use of mechanical objects supports engineering activities and how individual differences affect the learning process. At the end of the project, the researchers will develop typologies of object use and mental models describing the cognitive processes involved in solving engineering related problems. Finally, the results from this work will provide guidance as to how mechanical objects can be used as educational tools.
This award reflects NSF’s statutory mission and has been deemed worthy of support through evaluation using the Foundation’s intellectual merit and broader impacts review criteria.
NSF Award #1916521
Title: Impact of Interactive Holographic Scenes in Learning Applications of Data Sensing and Modeling
Abstract: With support from the NSF Improving Undergraduate STEM Education Program: Education and Human Resources (IUSE: EHR), this project aims to serve the national interest by preparing construction engineering and management students to use modern sensor technologies at construction sites. Over recent years, the construction industry has adopted widespread use of sensing technologies at construction sites, with resulting operational and safety benefits. The use of these sensing technologies has triggered a demand for construction engineering graduates who can enhance industry operations, innovation, and safety through successful deployment of sensor systems. However, it is difficult to prepare a future workforce that is technologically competent in the use of sensing technologies because safety, schedule, and weather-related constraints limit student access to construction sites. This proposal aims to overcome these limitations, in part, by using a mixed reality pedagogical framework combined with holographic telepresence technology. This educational approach is intended to equip construction engineering and management students with competencies in sensor technologies. The project promotes academia-industry partnerships by involving industry practitioners in determining the relevant construction engineering competencies and in developing an appropriate pedagogical approach. The learning activities developed for undergraduate students will also be adapted for use in K-12 programs.
In this project, holographic telepresence is being employed to bring digital participants and remote locations into the engineering classroom in 3D, thereby permitting hard-to-reach construction site personnel and experiences to be imported into the engineering classroom in real time. The goal is to create and assess a pedagogical framework for equipping construction engineering and management students with the competencies required on construction project sites. Specifically, the proposed framework involves projecting interactive holographic scenes of construction sites into the classroom environment, so that students can explore strategies for finding data sensing solutions to industry problems. A mixed method research study will be conducted to answer research questions that address the nature of the expected core competencies of graduating construction engineers and the value of the interactive holographic scenes in training construction engineers. The findings will serve as a guide for developing: (1) an innovative construction engineering and management education curriculum; and (2) a training program tailored towards improving existing construction workforce technical competencies. The plans include investigation of demographic influences on learning and spatial reasoning in the 3D holographic environment, which is likely to yield interesting insights regarding broadening participation in engineering. An important benefit of the project to society lies in the potential to demonstrate that affordable holographic telepresence technology can be harnessed by our educational institutions to provide higher levels of engagement in the STEM teaching and learning process. The NSF IUSE: EHR Program supports research and development projects to improve the effectiveness of STEM education for all students. Through the Engaged Student Learning track, the program supports the creation, exploration, and implementation of promising practices and tools.
NSF Award #2033445
Title: RAPID: Assessing the Reactionary Response of High School Engineering Teachers to COVID-19
Abstract: The COVID-19 pandemic has disrupted education on all fronts with no warning. The response from universities to go online was relatively consistent among universities, but K-12 education?s transition has not been as straightforward. Existing issues of equity, access, and inclusion have required school districts, schools, and teachers to adopt a variety of solutions, including no instruction, online instruction, and shipping materials/supplies to students at home. The existing pilot cohort of Engineering for Us All (E4USA) teachers provides a unique opportunity to understand how teachers are transitioning, especially when implementing a new and innovative engineering curriculum. This project allows the multi-institution E4USA team (Virginia Tech, Arizona State University, University of Maryland, Loyola University Chicago, Morgan State University, Regent University, Towson University and Vanderbilt University) to collect data on what has happened during the unforeseen and unique transition to ensure better capture and understanding of the drivers behind decisions and changes within high schools.
The E4USA Team will explore the following research questions: (1) How did the pilot year E4USA teachers adapt and deliver the curriculum during the COVID-19 disruption?; (2) What effect has COVID-19 had on the initial cohort of teachers? motivation, self-efficacy, sense of expectancy/value, and imposter syndrome?; (3) Did E4USA student perceptions of the program change after the disruption?; (4) What effect has COVID-19 had on the potential effectiveness of the upcoming 2020 summer PD? A multifaceted approach will be used to collect and analyze this data. Previously collected focus group transcripts and discussion posts from the pilot teacher cohort will be revisited along with post-COVID-19 focus groups and discussion posts to explore changes due to the pandemic disruption. Focus groups will be conducted with pilot teachers, incoming teachers, and students in the E4USA class to explore how the COVID-19 disruption affected their perception of the class and of engineering. Existing survey instruments for teachers are designed to measure motivational, instructional and engagement self-efficacy. These will be modified to ask teachers to rate these items side-by-side in the context of regular classroom teaching and COVID-19 related adaptations. Existing feedback and reflection questions designed as part of the initial survey will also be modified to include adaptations related to COVID-19. Finally, we will examine course artifacts before and after the COVID disruption. This study will allow the E4USA team to develop a framework to advise and inform both internal E4USA stakeholders and external education communities. Dissemination of these findings has the potential to inform all who are developing teacher PD, those funding and researching engineering in K-12 settings, local school administrations, and other universities interested in working with K-12 schools. This unique opportunity is urgent and may be the only mechanism to truly understand how to plan for, rather than react to, future catastrophic interruptions.
NSF Award #2306231
Title: Collaborative Research: Research Initiation: Formation of the Foundations for Engineering Intuition in Structural Engineering with Mixed Reality
Abstract: The design of large-scale structural systems such as buildings and bridges require practicing civil (structural) engineers to understand the linkage between the physical built environment and abstract descriptions, idealized depictions, and mathematical models used to explain their behavior. This formalized understanding is often developed through experience and forms the basis of engineering intuition. Students, or engineer trainees, lack this engineering intuition and are known to have difficulty making these connections and constructing mental models of the abstract concepts and complex systems in the absence of first-hand observations, which are challenging to replicate in the classroom. This project will utilize mixed reality technology, specifically a mobile augmented reality application that is deployable on mobile devices, to accelerate the educational experiences of students in a core structural design course. In the classroom, the technology integration will allow for collaborative (peer-peer and student-instructor) real-time engagement with models of real-world structural systems aimed at providing the essential linkage between physical representations and their theoretical abstractions. The research will evaluate the impacts of technology integration on instructional methods, student engagement, learning outcomes, and formation of engineering intuition. The study will be led by an experienced PI with expertise in structural engineering and technology development but new to the field of engineering education research, with mentorship provided by an experienced engineering education researcher with complementary expertise in cyber-learning, mixed-reality learning environments, and relationships between spatial and mechanical abilities in student learning. The collaboration will serve as a pilot study on the integration of mixed reality as an accelerator of the development of engineering intuition, a key characteristic in the formation of holistic engineers prepared to communicate effectively in a technology-driven world.
The research objective of this proposed project will measure the effectiveness of mixed reality as a tool for the development of engineering intuition in structural design and mechanics by providing students with a mechanism for engagement with real-world representations of the complex systems they intend to design. To meet this objective this study aims to: 1) assess the effectiveness of a mixed reality pedagogical tool on students? performance on abstract structural engineering design-related problems; and 2) assess the effectiveness of the pedagogical tool on students? engagement in structural engineering topics. The expected result of the integration of MR as a supplemental tool is that students will complete the course not only with the ?how? of design process, but also with increased knowledge and spatial awareness of the ?why? and ?in which context?, an essential component to the advancement of holistic structural engineers. The research will build from the situated perspective on learning through an empirical examination of the effectiveness of a guided active exploration process to improve students? abilities to visualize and analyze abstract descriptions of the problem context for structural engineering and design. In evaluating this approach, the study will answer the following research questions: 1) does mixed reality improve students? abilities to visualize and analyze abstract descriptions of the problem context for structural engineering and design?; 2) to what extent does mixed reality help students formulate their understanding of complex structural behavior and interactions within structural systems?; and 3) how do the students use and engage with mixed reality content in their exploration of structural engineering concepts?. The outcomes of this study will serve as the foundation for exploring mixed reality in other mechanics-oriented contexts and for broader technology dissemination to the engineering community.
NSF Award #2106180
Title: Collaborative Research: Research Initiation: The Use of Mobile Technology and Innovative Pedagogy to Improve Undergraduate Thermal-Fluid Science Learning
Abstract: Student retention remains a problem in science, technology, engineering and mathematics (STEM) programs. This project will utilize mobile technologies and a technology-enhanced curriculum to improve student engagement and learning in STEM undergraduate courses. The technology-enhanced curriculum will be fully integrated in the thermal-fluids course to deliver content and to facilitate student engagement with the content, instructor, and peers. This research project will measure how mobile technology, when purposefully integrated into engineering teaching, impacts student engagement, enhancement, and extension of learning to real-life problems. Through the full integration of mobile devices, findings from this research will transform the teaching and learning of the thermal-fluid science curriculum. The study will be led by a researcher who is new to the field of engineering education research who will be mentored through research methods by an engineering education researcher. This aligns with the Research Initiation in Engineering Formation program?s goal of initiating new researchers into engineering formation research to meet the needs of a diverse workforce. Undertaking such research project will supplement the lead researcher?s experience in developing and implementing mobile learning in the classroom while using social science research approaches to advance both the professional formation of future engineers.
The underlying goal of this research is to measure how mobile technology, when purposefully integrated into engineering teaching, impacts student engagement, enhancement, and extension of learning. Using an undergraduate thermal-fluid science course as a model course, the primary contribution of this research is to directly improve and transform engineering students? learning in one of the most difficult and abstract content in engineering curricula. Guided by a social-constructivist theoretical framework and the Triple E framework (Engagement, Enhancement of learning outcomes, and Extension of learning goals to real-life problems), the research team will conduct a mixed-methods study, implementing mobile devices with a stylus and a technology-enhanced curriculum. To examine the impact of mobile devices on student learning, the following research questions will be addressed in the areas of engagement, learning outcomes, and extension of learning goals to real-life problems: (1) Does mobile device use facilitate engagement in thermal-fluid science course content? (2) Does mobile device use increase learning of identified difficult concepts in thermal-fluid science courses as indicated by increased achievement scores? (3) What are student perceptions of using mobile devices for solving real-life problems? The findings from this research will provide educators a blueprint for broader implementation of mobile devices in teaching and learning across STEM disciplines. Further, this project is one of the first applications of the Triple E Framework in higher education, offering potential to bridge research on educational technologies with evidence-based teaching practices.
NSF Award #2106261
Title: Collaborative Research: Research Initiation: Understanding of Engineering Core Concepts Contextualized in Domain-Specific Settings Through Active Exploration
Abstract: The long history of experiential learning in engineering education shows the significant potential of cognitive development through direct experience and reflection on what works in practice. However, active exploration in a real-life situation may not be always feasible. Recent advances in computer science help educators develop virtual environments and game platforms that allow students to explore various scenarios and learn from their experiences. This project will explore students? learning of two engineering core concepts: design of a system and optimization contextualized in domain-specific settings. Further, it will examine students? ability to discover systematic solutions for fundamental engineering problems through active exploration in a digital game environment. An online game-based platform will be developed and used to empirically examine the effectiveness of active learning pedagogy. The game will expose users to the two engineering core concepts in the context of construction planning and scheduling through scenario-based problems. The game will be used in a graduate level construction engineering course and the final version of the game will be available for free to download and to play to anyone in the world through a dedicated website and app stores. The outcomes of the project and the game-based platform can be used in outreach programs to engage and inspire underrepresented and K-12 students in pursuing STEM education. In addition, this project will prepare and train the PI to take a leadership role in social science research on the professional formation of engineers through a mentored, collaborative research project which will expand the community of engineering education researchers.
The proposed gamified pedagogical approach will be designed based on constructivism learning theory. This research project will answer three questions: 1) Does guided active exploration in a digital game environment improve students? understanding of two engineering core-concepts (i.e., design of a system and optimization) contextualized in domain-specific settings? 2) Does guided active exploration in a digital game environment improve students? ability to discover systematic strategies to solve fundamental engineering problems? and 3) How do students perceive an interactive digital gamification platform that lets them explore scenario-based engineering problems as a formal learning tool? Addressing these questions will provide insights into how providing students with opportunities to explore the impact of manipulating various elements of an engineering problem can contribute to a better understanding of the engineering core concepts and discovery of systematic solutions for domain-specific engineering problems. To address the research questions, qualitative and quantitative analyses will be performed, including 1) pre- and post-assessments (e.g., prior knowledge surveys, benchmark exams, game-based assignments, and semi-structured interviews) and 2) game data, including log files and electronic records of students? inputs in the debriefing and articulation features. This research project will create and examine an innovative engineering education method that can be adapted to other engineering fields and education levels, including undergraduate and high school programs. Although the research uses construction engineering as a study setting, its outcomes will contribute to other engineering fields and it will add to the cutting-edge state of practice in learning at scale.